International Journal of

l'IEAT and MASS
TRANSFER

PERGAMON

International Journal of Heat and Mass Transfer 44 (2001) 4059-4073
www.elsevier.com/locate/ijhmt

A statistical model of wave scattering from random rough
surfaces

Kakuen Tang ?, Richard O. Buckius **

% Boeing Satellite Systems, El Segundo, CA, USA
® Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 140 Mech. Eng. Building, MC-244,
1206 West Green Street, Urbana, IL 61801, USA

Received 23 June 1999; received in revised form 2 January 2001

Abstract

A statistical model based on the geometric optics approximation for predicting wave scattering from random rough
surfaces is developed. This model uses statistical concepts, rather than bundle tracing employed in the geometric optics
approximation. This model includes first-, second- and higher-order scatterings. Shadowing effects are included, and the
model can be expressed in a closed form. For one-dimensional random rough surfaces, the statistical model is quantified
by comparisons with the exact electromagnetic theory calculations, and the results are in good agreement for surfaces
with a surface slope less than unity. For two-dimensional random rough surfaces, the approximate results are compared
with the existing experimental findings and electromagnetic theory calculations. The statistical method is a computa-
tionally inexpensive wave scattering approach for surfaces with a surface slope less than 0.5, and the method can
approximate the magnitude and the trend for surfaces with a surface slope greater than 0.5. © 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Scattering problems have been extensively studied
both analytically and experimentally. The analytical
approaches have considered both rigorous electromag-
netic theory methods and approximate models. Rigor-
ous electromagnetic theory provides exact solutions to
surface reflection problems without any restriction on
incident angles, incident wavelengths, optical constants
of surface materials, correlation length and surface
roughness. This approach involves multiple coupled in-
tegral equations, which can only be solved analytically
for a few limited cases. Thus, numerical schemes are
typically required. In addition, due to computational
limitations, the ability to predict such reflection distri-
butions from general random rough surfaces through
electromagnetic theory has only recently been devel-
oped, and results are available only for one-dimensional
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surfaces (two-dimensional electromagnetic fields) in
general [1-14], and for two-dimensional surfaces (three-
dimensional electromagnetic fields) in limited cases
[15-22].

Rigorous electromagnetic theory analysis of surface
reflection is very computationally intensive. This is es-
pecially true for random rough surfaces since a statisti-
cally accurate result has to be averaged over numerous
surface realizations. Thus, various surface scattering
approximations have been developed to circumvent
these difficulties. Two often-used approximations are the
specular (Fresnel) [23] and diffuse (Lambertian) [24]
models. The specular model assumes that energy is re-
flected in the solid angle region around the specular
angle (0; = 0,), while in the diffuse model, energy is
assumed to be equally distributed in all directions. The
Kirchhoff approximation [25] is used to predict the re-
flection distribution between the specular and diffuse
reflection. At every point on the surface, the scattered
magnetic and electric fields are approximated by the field
that would exist on a plane tangent to the surface at this
point. The Kirchhoff approximation has been applied to
both one-dimensional and two-dimensional random
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Nomenclature

Ao incident area
Ap projected area
A reflecting area

set of normals

criterion ratio

fraction of incoming energy
Fresnel reflection coefficients
probability density function
conditional probability
intensity

surface refractive index
position vectors

shadowing function
transfer function

x, y, z surface coordinates

z,z, partial derivatives

ST I N NN A

Greek symbols

0,,0s angles between beam and normal vectors

@ radiant power flow

¢ Azimuthal angle

Y, wavelength

0 polar angle

p",p"  bi-directional reflectivity; directional
reflectivity

a roughness

oms  rms surface slope

T surface correlation length
7”,7"  bi-directional transmissivity; directional
transmissivity

K absorption index
Q scattering direction, solid angle
{ surface profile

(., ¢, surface derivatives

Subscripts

1 first-order scattering

2 second-order scattering
3 third-order scattering
a approximate solution
cr critical value

d directional criterion, directly reflected
dd directional diffuse

e exact solution

H higher-order scattering
m mean value

0 incident

S scattered

sp specular

t transmission

x,y,z coordinates

Superscripts
! hemispherical

" bi-directional

rough surfaces and domains of validity have been con-
structed [26-29]. It is commonly believed that the
Kirchhoff approximation yields an accurate solution
when the surface geometric parameters are comparable
with the incident wavelength and the ratio of surface
roughness to correlation length is less than 0.3.

The geometric optics approximation to electromag-
netic theory provides a multiple scattering solution for
surface reflection. In this approximation the energy in-
cident on a rough surface is traced through multiple
interactions with the surface until it leaves the surface,
and Fresnel reflection is applied to each local point of
intersection. For a rough surface, the number of inter-
actions typically increases with surface slope. For a
plane surface, the geometric optics approximation re-
duces to the Fresnel reflection since all the energy is
reflected in the solid angle region around the specular
angle. Tang et al. [30,31] have shown that the geometric
optics model can provide accurate solution for one-di-
mensional random rough surfaces with ¢/t < 4.0 and
for two-dimensional surfaces with /7 < 1.0.

Probability and statistical concepts have often been
applied to wave scattering phenomena. In general, these
statistical models provide a closed form solution, and
the numerical requirements are less demanding than

other methods. The basic elements of statistical models
are incoming and outgoing shadowing functions. The
incoming shadowing function is the probability that a
surface point does not lie in a shadowed region for a
specified incident angle, and this probability is equal to
the outgoing shadowing function which is the prob-
ability that an energy bundle reflected at a specified
angle will not re-strike the surface. Various geometrical
shadowing functions [32-36] have been developed for
Gaussian random rough surfaces and then employed in
reflection models. Wagner [33] developed shadowing
functions in which the correlation between surface
height and surface slope at one point is neglected. The
correlation of surface heights and surface slopes between
points is also neglected. This function is a closed form
solution involving error functions, correlation length,
surface deviation and incident angle. Lynch and Wagner
[37] adopted this function and developed a light reflec-
tion model based on the ray nature of light, and this
model includes first and second-order scatterings. The
shadowing function is the basic component of this re-
flection model. The solution involved numerous al-
gebraic equations. In addition, based on the input
parameters, different equations are used to generate the
reflection distributions. No comparison has been made
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for quantifying the model and the domain of validity is
unknown.

Smith [32] developed a similar uncorrelated shad-
owing function that is also a closed form solution in-
volving error functions, correlation length, surface
deviation and incident angles. Because of its simplicity,
Smith’s shadowing function has often been employed in
wave scattering. He et al. [38] developed a light-reflec-
tion model in which the reflection distribution is a linear
addition of three components: specular, directional and
diffuse reflections. In this He et al. model, Smith’s
shadowing function is employed to account for incom-
ing and outgoing shadowing, and Fresnel relations are
used to estimate the fraction of the reflected and ab-
sorbed energy. Smith’s shadowing function is further
approximated by a simple expression [39] without error
functions, and this expression has been employed in vi-
sual image generation.

Monte Carlo simulations [40] have been used to
quantify shadowing models. Those models considered
include Wagner’s correlated and uncorrelated shadow-
ing functions, Smith’s shadowing function, and a model
based on Rice’s work [41] on random noise. Correlation
is considered in this last model; however it involves a
summation of an infinite series and numerical integra-
tion is required. The results indicate that the model
based on Rice’s work provides the best agreement with
the Monte Carlo solutions, but the numerical integra-

tion breaks down for an incident angle greater than
approximately 60°.

In this work, a statistical model based on the geo-
metric optics approximation for predicting surface wave
scattering is presented. This model uses statistical con-
cepts, rather than bundle tracing employed in the geo-
metric optics approximation. This model includes first-,
second- and higher-order scatterings. The formulation
of the statistical model is presented in the following
section, and the model is quantified through compari-
sons with electromagnetic theory calculations and with
experimental findings in Section 3.

2. Surface wave scattering analysis
2.1. Radiative properties

A semi-transparent surface that is illuminated by an
electromagnetic wave will reflect, transmit and absorb
different fractions of the incident energy. For perfectly
conducting surfaces, all energy is reflected (there is no
absorption or transmission). In reality, there is no per-
fectly conducting material. However, such a scenario
can be approximated by many metals. For dielectric
materials, on the other hand, significant absorption and
transmission occurs. Examples of dielectric materials
include metallic oxides and polyimides.

Fig. 1. Bi-directional reflectivity geometry.
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To quantify the angular distribution of the reflected
energy, the bi-directional reflectivity is defined as 7 times
the ratio of the reflected power per unit solid angle per
unit projected area to the incident power [23] and is
given as

where @ and Q are the radiant power and solid angle,
and the subscripts o and s denote incident and scatter-
ing, respectively. Fig. 1 shows the bi-directional reflec-
tion geometry in which 7, is the spectral intensity defined
as the radiant power per unit area perpendicular to the
direction of travel per unit solid angle and per unit
wavelength interval.

Likewise, to describe the angular distribution of the
transmitted energy, the bi-directional transmissivity is
defined as the ratio of = times the transmitted power per
unit solid angle per unit area normal to the direction of
transmission to the incident radiant power as

o (G t2)/(5)

where the subscript t denotes transmitted quantities.
Integration of the bi-directional reflectivity and the
bi-directional transmissivity over the respective hemi-
spheres yields the directional reflectivity and transmis-
sivity for a given angle of incidence, respectively. The
expressions are

p(2) =T / (20, 2,) cos(0,) 42, (2)

2n

and

r;(Qo):l/ 7(Q0, ;) cos(6;) dQ;. (2b)
T Jor

Two additional thermal radiative quantities are the
emissivity and absorptivity. These radiative quantities
are related by Kirchhoff’s law and the conservation of
energy [23]. Kirchhoff’s law provides the equality be-
tween emissivity and absorptivity.

2.2. Random rough surfaces

Two-dimensional random rough surfaces are gener-
ated by a stationary stochastic process with a zero mean
and a Gaussian probability density function of the sur-
face height [42], {(r). Thus,

({(r) =0, (3a)

(W) = 7 exp [_ (|x1 —of Iy y2|2)],

2 2
T T;

(3b)

where r is the position vector and x, y, z are the com-
ponents of r. 7, and 1, are the correlation lengths in x
and y directions, and ¢ is the mean-square departure of
the surface from flatness. The rms slopes in the x-
direction and y-direction of these surfaces are given as

(L))" = V2o, (4a)
(oD = Vi, (4b)

For a given surface, ¢ and the rms slopes can be deter-
mined by measuring the surface height in various loca-
tions, then 1, and 7, can be found through Eqgs. (4a) and
(4b). One-dimensional random rough surfaces can be
generated by eliminating the y-components and replac-
ing r by x in Egs. (3a), (3b) and Egs. (4a), (4b).

In this work, only two-dimensional random rough
surfaces that exhibit no preferential roughness direction
are considered; thus 7, and 7, are equal and denoted
by 7.

2.3. Statistical method

The statistical model is developed based on the geo-
metric optics approximation which provides a multiple
scattering solution for random rough surface reflection.
In the geometric optics approximation, the energy inci-
dent on a rough surface is traced through multiple in-
teractions with the surface until it leaves the surface, and
Fresnel reflection is applied to each local point of in-
teraction. In the process of the ray-tracing, an incident
bundle may hit the surface once (first-order scattering),
twice (second-order scattering) or many more times.
Thus, the total energy reflected in the direction of € is
the sum of the reflected energy from all scatterings,

£5(Q0, Q) = p 1 (R0, Q5) + p5(2, Q)
+075(Q2, Q) + -+ (5)

where the subscripts “1”, “2” and “3” denote the first-
order, second-order and the third-order scatterings.

For interfaces that are relatively smooth, first-order
scattering dominates the surface reflection and very few
second-order and higher-order scatterings occur (there is
little inter-surface reflection). Thus higher-order scat-
terings can be neglected so that the bi-directional re-
flectivity becomes

P5(Q0,85) = pg,l (Qo, ). (6)

Typically, for smooth surfaces with ¢/t < 0.25, the re-
flected energy for single scattering is about 95% of the
total reflected energy. And for surfaces with an inter-
mediate roughness, o/7 < 0.5, the reflected energy is still
dominated by first-order scattering (~65%); however,
second-order scatterings become considerable (~30%)
and contribute to the angular reflection distribution.



K. Tang, R.O. Buckius | International Journal of Heat and Mass Transfer 44 (2001) 4059-4073 4063

2.4. First-order scattering approximation

To understand the statistical approach, this section
reviews the single scattering process. Consider a surface
that is illuminated by a source with an incident direc-
tion of Q,. Some portions of the surface may lie in
shadowed regions and cannot participate in the scat-
tering process. For the illuminated regions, the energy
will be reflected in various directions which depend on
the local slopes or local normal vectors. Some of the
energy will leave the surface and is considered as a
contribution of pf,(Q,,€) while some energy may
restrike the surface. The whole process can be inter-
preted as three probabilities, i.e., the chance that a
surface element does not lie in a shadowed area, the
fraction of the incoming energy that will be reflected by
this element with certain surface slopes, and the chance
that the reflected beam leaves the surface. Let 4, B and
C denote these three events, and the bi-directional re-
flectivity is expressed as

Pl xP(ANBNC). (7a)

In order to simplify the calculations, the correlation
between surface heights and slopes between points is
neglected, i.e., events 4, B and C are independent, and
the bi-directional reflectivity becomes

P;1(Qo,5) o< P(4)P(B)P(C). (7b)

For single scattering, the chance that a surface element
does not lie in a shadowed area (event A4) is equal to
the chance that a bundle leaves the surface without
restriking the surface (event C). Thus, P(4) and P(C)
can be expressed by the same notation S(Q2,0/7,0/4),
called the shadowing function. For event A,
P(4) =8(Q,, o/t,6/A), while for event C,
P(C) =8(Qs,0/t,0/2).

Smith’s shadowing function [32] is used in the sta-
tistical method because the function provides a simple
and reasonably accurate scheme to approximate the
influence of shadowing. Smith started from one-di-
mensional random rough surfaces and approached the
shadowing function by using the scenario that bundles
leaves a reflection point (event C). In addition, corre-
lation between surface heights and surface slopes be-
tween points is omitted, leaving the shadowing function
independent of o/A. Based on this scenario and as-
sumptions, the shadowing function is a function of the
incident angle, 0,, and the surface slope, /7. Smith
expressed this function as

S(B%) :ALH, 0° < 0, < 90°,

o ) . (8)
5(95,;) —0, 90°<0,<180°,

where

A=

\/g%e—(u)z/zﬂnzmb — erfc( K ) ’
T p \/io_rms

u = tan(90° — 0;), and g, is the rms surface slope de-
fined as oy = \/ia/ T, = \/fa/ 7,. The derivation of the
shadowing function involves numerous probability
concepts such as conditional probability, subsets, and
joint probability density. A detailed description of the
formulation of the shadowing function is provided in
Ref. [32].

Smith’s shadowing function can be adopted in the
statistical method for two-dimensional random rough
surfaces by simply changing the axes-orientation for
each intersection. Suppose that a bundle leaves a re-
flection point with a scattering direction of Q(0s, ¢;).
Selecting the projected line of the bundle as the x-axis
with the origin at the reflection point reduces the two-
dimensional shadowing problem to a quasi-one-dimen-
sional problem and the scattering direction becomes
Q(0s, g = 0°).

For event B, P(B) is the fraction of the incident en-
ergy that hits an element with certain slopes ({,,{,).
Consider a bundle carrying an amount of energy which
is proportional to the incident area, A4,, and let
1(40,¢:,¢,, 0,0/7) denote the transfer function where
1(4o,,, ¢, 00,0/7) AL, dE, [ie., P(B)] is the fraction of
that incoming energy which is reflected or transferred by
elements with certain slope values (z,,z,) within the in-
terval  [{, —d{,/2<z <{ 44 /2,0, —d{/2<z,
<{, +d¢,/2]. To simplify the analysis, the projected
line of the bundle is selected as the x-axis with the origin
at the reflection element. Thus, the scattering direction
becomes Q,(0,, $, = 0°). In addition, correlation is ne-
glected between surface heights and surface slopes be-
tween points.

To evaluate the transfer function representing the
fraction of the incoming energy which is reflected by a
surface element with particular slope values ({,,(,), two
issues need to be considered: the surface slope distribu-
tion and the area ratio. For a Gaussian surface, the
surface slope distribution is the multiplication of the
slope distributions of {,, and {, as

1
OrmsV 2T

#2 2
o5/ 20ms .

1 e 0/ (9)

f(Eetn?) = A

where 6, is the rms surface slope and can be found by
Orms — \/50'/ T.

Fig. 2 illustrates the contributions of the ratio area on
the transfer function. Fig. 2 shows several surface
elements which have the same width of Ax but different
surface slopes. As shown in Fig. 2(a)-(d), for bundles
with an incident angle of 0,, the bundles can only hit the
surface element with a slope between {, = — tan(90° —0,,)
and {, = oco. Thus, the summation of the transfer
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g =-tan(90°- 6,)
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(@) s

~
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§x> -tan(90°- 0 O)

N _ L2

I
l<Ax>:

(b)

_ - _ Ayl
N\ tan(GO)

(0

(d) . !

Fig. 2. The transfer function and overshot bundles.

function #(4,, ;, {,, 0, a/1) over all such elements which
can be hit should be equal to unity.

For the element with a slope of {, = —tan(90° — 0,)
as shown in Fig. 2(a), no energy is reflected and all en-
ergy will overshoot the element and hit other surface
elements. As the surface slope increases to a less negative
value, a portion of the incident energy is reflected, and
the remaining energy will overshoot the element and hit
other elements (Fig. 2(b)). The amount of energy that is
reflected is proportional to the reflecting area, A,. If the
slope is greater than or equal to a particular value
(.= (4, — 1)/tan(6,), all incident energy is reflected,
and by Snell’s law, the reflected area A4 is equal to the
incident area 4, (Fig. 2(c) and (d)).

At each overshoot, a fraction of energy is directly
reflected and becomes a contribution of the reflection
distribution. For the first directly reflected part, the
fraction of energy reflected is proportional to the slope
distribution weighted by the ratio of the areas of the
incident bundle and reflected bundle:

v A
tld(AmL.»mCyaHmO-/T) “f((m&w;);v (10)
where the subscripts “1”” and “d” denote the first over-
shoot and the directly reflected part.

Fig. 3 shows an example of the area ratio for

the cases with an incident angle of 30° and 4, = 0.267.

The area ratio is presented from ( =
—tan(90° — 6,) = —tan(60°) to {, = co. For the ele-
ment with a slope of —tan(60°) (Fig. 2(a)), 4; is zero,
resulting in a zero area ratio. As the slope increases, A
and the area ratio increase (Fig. 2(b)). For any element
that has a slope such that the projected area of the ele-
ment is greater than 4,, by Snell’s law (Fig. 2(c) and (d)),
A is equal to 4, and the area ratio is unity.

1 T T T T T
0.8 E :
0.6 -
<
s
04 - ]
[
r
0.2 { R
0 I S S S B S S R | IR | IRt | R S S S S S S T
-90° -60° 30° 0° 30° 60° 90°

PR

Fig. 3. An example of the area ratio 4;/4, for 0, = 30° and
A, = 0.267.
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To evaluate the transfer function, 7(4,, (., ,, 0o, 0/7),
the overshot bundles need to be considered. For the el-
ement with a specific slope of {, = —tan(90° — 0,), the
area of the overshot bundles are the same as that of
the original incoming bundles (see Fig. 2(a)). Thus, for
this element, energy is distributed exactly as
t14(4o, ¢, {y, 0o, 0/7). In addition, the energy carried by
these overshot bundles is the maximum energy that
overshot bundles can carry. As the slope of the element
increases to a less negative value, the overshot bundles
carry less energy, and the energy is distributed in a
slightly different manner from #4(4, (., ;, 0, 0/7). As
the slope further increases, the energy distribution sig-
nificantly deviates from ,4(4,,(,,{,, 0,,0/7); however,
the amount of energy carried by the overshot bundles is
small. Therefore, the energy distribution of the second
directly reflected part, t4(do, s, ,,0,,0/7), can be ap-
proximated by that of the first directly reflected part,
t14(4o,¢,,{y5 0o,0/7). A similar analogy can be applied
to the higher-order directly reflected parts. Thus, the
transfer function is a linear summation of
t14(4o, ., {5 0o, 0/7) with a weight for each term. Then,
factoring #14 (4o, (s, {,, 0, /1) gives

t(AO7 Cx) Cy7 007 G/T) = tid (Am (:x) Cy7 007 O—/T)

(et D)5 (i

since the summation of all the weights is unity. The
transfer function can be found by normalizing the
quantity f((,,(,,7/0)4s/4 by its integrated value to
yield

(40, Gy, 06, 0/7)
_ f(C,mé/)ma/T)j_i (12)
]‘f‘; fjotan(%"—(?o)f(g“ Cy’ G/T) 27; dC’f dC}'

Note that similar to the shadowing function,
t(AO,CX,C},,BO,a/‘c) is not a function of o/1 because of
the assumption that there is no correlation between any
elements.

For the first-order scattering, the transfer function
t(4o,(:, ¢y, 00,0/7) can be further simplified. For each
element with certain slopes ({,,{,), the area of the in-
coming bundles are set equal to the projected area as
shown in Fig. 2(c) [i.e., no overshoot occurs] and the
area ratio in Eq. (12) is always unity. The transfer
function is then independent of 4, and substituting Eq.
(9) into Eq. (12) yields

P 2 —(£2 /262
(L, 80 00,0/7) = eGP )
erfc[tan(90° — 0,)].

(13)

2 (2 2 . .
The term e &/>%) e /2% tesults from the slope distri-
bution, and the error function term is the integration of
the denominator of Eq. (12).

To complete the specification of pf, (€, ), Snell’s
law is used to relate the incident vector, the scattering
vector, and the surface slopes ({,,{,) as

Qs =Q, +2|Q, -n|n. (14)

As mentioned before, for a given incident direction only
one value of the slope pair ({,,{,) yields the desired
scattering direction, and the bi-directional reflectivity
can be expressed as

" T t (:,n Cw 007 g/t dcvc dC
p/l,l(esaqbs) = ( 5 / ) e
cos(6,) sin(6;) dfs d

% 5(00,2)5(0 2 ) Ap(Ces 00)F (1, 1,3,
(15)

where the first term incorporates energy needed in the
definition of the bi-directional reflectivity. t(CX, -
0o,0/7)d(,d{, represents the fraction of the incident
energy which is reflected by the element, and
sin(0s) d0; d; is the solid angle. S(0,,d/1) and S(0s,0/7)
are the incoming and outgoing shadowing functions.
Ap((:,0,) is the projected area and F(n,x,a,) is the
Fresnel coefficient [23]. o, is the angle between the in-
coming bundles, and the surface normal vector n, which
is calculated from the surface slopes ({,(,). Note that
the bi-directional reflectivity is a function of o/7,0,, 0,
and ¢, but not /.

To calculate the first-order scattering, the required
input parameters include the surface materials (n,x),
surface geometric parameters ¢/t and the incident di-
rection Q,(0,,$, = 0°). The surface slopes ({,,(,),
which yield the desired scattering direction Q(0s, ),
can be found by Eq. (14). This equation geometrically
relates the incident direction, the scattering direction
and the surface slopes. In addition, differentiating this
equation yields the term d{,d{,/d0;d¢,. The shadow-
ing and the transfer functions are calculated by Eqgs. (8)
and (13). The projected area is A,((,,0,) =1+
(. tan (0,) and the Fresnel coefficients depend on surface
materials [23].

2.5. Second-order scattering approximation

Similarly, second-order scatterings can be interpreted
as probabilities: the chance that a point on the surface
does not lie in a shadowed area [event A]; the fraction of
the incident energy reflected by an element with certain
slopes ({,1,{,1) [event B]; the chance that the first re-
flected beam will restrike the surface [event CJ]; the
fraction of the first reflected energy striking an element
with certain slopes ({,»,(,,) [event D]; and the chance
that the second reflected beam does not restrike the
surface [event E]. Assuming that there is no correlation
between surface heights and surface slopes, the second-
order scatterings bi-directional reflectivity can be
expressed as
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72(820,95) oc P(4)P(B)P(C)P(D)P(E). (16)

Events 4 and B are the same as for single scattering,

P(C)=S8(05,0/t) for single  scattering, yet
P(C) =1—58(0,0/7) for second-order scatterings since
P(C) is the probability that the bundles restrike the

surface. P(D) can be evaluated in a similar manner as
P(B) where the first reflected beam is transformed into
the new incident beam. However, for the second-order
scattering, the energy (proportional to 4,) carried by the
first reflected bundles are fixed. Thus overshoot can
occur, and instead of Eq. (13), the general form of the
transfer function (Eq. (12)) should be used to evaluate
P(D). P(E) is equal to the shadowing function evaluated
at the desired scattering angles. Thus,

P(d) = (05,7,

P(B) = 1(Ca G, 00, % ) iy dEyy,

T

P(C) =1 fS(Osl,%), (17)
P(D) = 1(4o, s 2. 0,7 ) dCp Gy, and

P(E) = 5(9579).

T
For P(B), ({u,{,) are the partial derivatives of the
surface profile at the first reflection point in directions
parallel to and perpendicular to the projected line of the
incident bundle, respectively. However, for P(D),
({42, {y2) are the partial derivatives of the surface profile
at the second reflection point in directions parallel to
and perpendicular to the projected line of the first re-
flected bundle.

Similarly, Snell’s law is used to geometrically relate
the incident vector, slopes of the first reflection point
(&a1,¢1), slopes of the second reflection points (2, {,2)
and the scattering vector. However, unlike single scat-
tering for a given incident direction, more than one
combination of ({,{,;) and ({x,{,,) would yield the
same desired scattering direction in double scatterings.
Thus, let C be a set containing all possible combinations,
denoted by

C= { [ll] (th Cyl)7n2 (éva CyZ)] :

Q= Q, +2|Q, -myny, Q = Q + 2|9y ~n2|n2}, (18)
where n; and n, are the normals of the first reflection
point and the second reflection point, and €, (05, ¢y,) 1s

the first reflected vector. Finally, the bi-directional re-
flectivity of second-order scatterings is

Y dCr dCy
cos(0,) sin(6) dOsd

s(02)5(0.5) [ [ 1-5(0.5)]

,02_2(05, d)s) =

P a P a
X t(é’xlv Gyl 903 ;)t<A07 C,‘(Za 6325 051 ) ;)
X Ap (L, 06)F (1,16, 000 )F (1, 16, 0061 )AL dE,p (19)

To calculate the second-order scattering bi-directional
reflectivity, surface properties, surface geometric par-
ameters and incident directions are required. The term
d{,d¢,/d0sd¢, can be found by differentiating Eq. (14).
Eqgs. (8) and (12) are used to evaluate the shadowing
functions and the transfer functions. The projected area
is 4 (L., 0,) =14 tan(0,). F(n,x,0,) and F(n, K, o)
are Fresnel coefficients for each surface reflection.
F(n,k,a,) accounts for the fraction of incident energy in
the first reflected bundles, and F(n,x, o) accounts for
the fraction of the energy in the first reflected bundles to
second reflected bundles. «, is the angle between the
incident bundle and n;, while oy is the angle between the
first reflected bundle and nj,.

The second-order scattering bi-directional reflectivity
is a function of ¢/7, 0,, 05 and ¢,. However, unlike single
scattering, p’,(0;,¢,) cannot be expressed in an al-
gebraic formula. A numerical evaluation is required for
the evaluation of the double integral in Eq. (19) over the
domain C (Eq. (18)).

To avoid this integration, the second-order scattering
can be approximated in a simpler form. The concept
used to simplify the second-order approximation is to
assume all reflected energy is concentrated in several
dominant directions. Consider the fraction of the in-
coming energy in a specified direction after the first-or-
der scattering from the surface, €. This includes energy
that will leave the surface (first-order scattering) and the
energy that will restrike the surface (second and higher-
order scatterings). Thus, subtracting the transmissivity
from unity yields

¢ =1-7,(0,). (20)
The prime denotes ¢| is a directional quantity. For a
perfectly conducting surface, 7} ;(6,) = 0 and ¢} is equal
to unity. Similarly, € is the fraction of the incoming
energy after the second-order scattering and

ey=1- T//i,l(HO) - p;,l(GO) - 12.2(90) (21)

Note that the hemispherical reflectivity and transmis-
sivity can be found by Egs. (2a) and (2b). Consider the
angular distribution of e}, the fraction of the incoming
energy which is reflected by an element into a particular
direction after the first scattering from the surface, €.
The result is

el = (00,2 )y (€ 00)t (L 61, 00,2 )Pl w20, (22)

The quantity depends upon the incident and scattering
directions; therefore, the quantity has a double prime.
/!

Multiplying €] with the outgoing shadowing function
S(0s,0/7) yields the fraction of the incoming energy of
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first-order scattering, and an additional angle and slope
factor yields the bi-directional reflectivity for first-order
scattering in Eq. (19). On the other hand, multiplying e}
by one minus the outgoing shadowing function,
1 — S(0s,0/7), yields the fraction of the incoming energy
that restrikes the surface and becomes second and
higher-order scatterings.

To further simplify the expression, the energy in all
directions is assumed to be divided among four quad-
rants formed by the planes ¢, = 0° and ¢, = 90°. Energy
within each quadrant is first assumed to be reflected
within one plane of ¢,. Then within that plane, all en-
ergy is assumed to be reflected in one polar direction.
Thus, there are four reflected bundles, and this second-
order scattering problem becomes four first-order
scatterings. The key issue in this approximation is to
estimate the amount of energy carried by each bundle as
well as their reflection directions. One way to determine
the amount of energy carried by each bundle is inte-
grating the area under the curve ¢{[1 — S(6,,d/7)] over
its quadrant. Also, the reflected direction of each bundle
can be approximated by its mean value (weighted by
energy distribution).

The bundles’ reflected directions and the fraction of
the incoming energy they contain can be further ap-
proximated. Fig. 4 presents 1—S(6;,0/1),¢] and
e[l —8(0s,0/7)] as a function of the first scattering
angle, 05, for a one-dimensional perfectly conducting
random rough surface with a surface slope of 0.75.
These results are generated by Eqgs. (8) and (22). The
incident angle is 30°. 1 — S(0;, /1) is the chance that the
bundles reflected at this first scattering angle will restrike
the surface. As shown in Fig. 4, bundles with a scattering
angle of 0° will leave the surface, while bundles with a
reflected angle greater than 90° will restrike the surface.

The distribution of e{ is dependent on the incident
angle, 6,, and the projected area, A4,((,,0,). €/ has an
asymmetric distribution and a large amount of energy is
reflected in negative scattering angles. The fraction of

0.8

o/t=075
9,=30°

[@o9)s-1]. o pue ‘o

. cl'*[l—S(gq,mm

0.2

180°

Fig. 4. Shadowing function and energy distribution.

the incoming energy that will restrike the surface,
/[l — S(0s,0/7)], consists of a region centered approx-
imately at a scattering angle of 6; = —90° and another
region centered at about 0; = 90°. The first region has a
peak magnitude about twice as great as that of the
second. In addition, as shown in Fig. 4, the peak of the
positive region is located at approximately 90°. This is
because 1 — S(0s, 0/7) is increasing as |0;| increases from
zero and reaches unity when 05 > 90°, while e is de-
creasing as 5 > 90°. A similar situation is observed for
the negative region such that the reflected polar angles of
the bundles can be approximated at 90° and —90°. This
approximation has been determined to be accurate for
surfaces with a surface slope less than 1.2.

Even though the fraction of the incoming energy that
restrikes the surface shown in Fig. 4 is for a one-di-
mensional case, a similar two-region curve applies to
two-dimensional cases. For any particular ¢, the
shadowing function is independent of ¢.

For an element with a zero slope with respect to y-
axis ({, = 0), the energy will be reflected in the plane of
incidence ¢, = ¢, = 0°. As , varies, energy will be re-
flected out of the incident plane. The reflected energy
distribution over ¢, has a geometric relationship with
the Gaussian distribution of {,. Thus, the azimuthal
angles of the bundles can be approximated by
2tan (Cy_,,,). The tangent function and the factor of two
result from the geometric relationship, and {,, is the
mean of all possible {, values that reflect energy to one
quadrant. This value is {,, =4+/2/n0m,. Let
Qp, Qn, Qi and Qyy be the reflection directions of these
four bundles:

Q = Q(05, §,) = 2(90°,2tan (¢,.,,) ).

Qu = Q(0, ¢,) = 2(90°, — 2tan (,,,)),

Qui = Q(b,, ¢,) = Q( —90°,2tan ({,,,)), and (23)
Qi = Q(0,p,) = Q( —90°, — 2tan (,,,))-

According to the conservation of energy, the fraction of
the incoming energy which will restrike the surface after
hitting the surface once (i.e., the summation of the en-
ergy contained in the regions) is 1 — p’,(0,) — 7}, (0s).
Then, the fraction of the incoming energy carried by
each bundle can be approximated by this total energy
that will restrike the surface weighted by the magnitudes
of ej[1 — S(6;,0/7)] evaluated at the reflection angles of
the four bundles. To simplify the notation, let
r(Q,0/t) =€, (05)[1 — S(0s,5/7)], and the fraction of the
incoming energy carried by the bundle reflected at the
scattering direction of €y is estimated as follows:

EI(QI,O'/T)

3 1= p}1(00) = 71 (06) | (€21, 0/7)
T r(@1,6/7) + #(Qu, 0/7) + r(Qm, 0/1) + Qv 0/1)
(24)
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For the reflection directions Qy, Q  and
Q]v, e‘[[(QH, O'/’L'), 6111(91117 O'/’L')7 elv(QIV7 O'/’E) are ob-
tained by replacing the argument r(Q,0/17) by
r(Qu,0/1), r(Qm,o/t) and r(Qw,a/1), respectively, in
the numerator of Eq. (24). The bi-directional reflectivity
of the second-order scattering can be estimated
T dCX dg;
cos(0,) sin(6s)d0;de

<s(07)s(07)

o
X t<A0a CxZa CyZa 6/17 ;)Ap(ng OD)F(nv I, %s) )

(25)

p///z(()s» (;bs) =

¢j(1,0/7)

J=LILIILIV

Comparing Eq. (19) to Eq. (25), the first few terms are
the same, while the integral in Eq. (19) is replaced by a
four-time summation. To compute the bi-directional
reflectivity based on Eq. (25), the reflected directions of
the four bundles are required and can be found by Eq.
(22). The fraction of the incoming energy in the bundles
is then evaluated by Eq. (24). Once the reflected angles
and the energy of the bundles are solved, the calculation
steps are similar to that of first-order scatterings.

2.6. Higher-order scattering approximation

For the surface with a surface slope less than 1.1, the
energy involved in the third and higher-order scattering
is typically less than a tenth of the total incident energy,
and in general, the energy reflected is relatively diffuse.
In this work, the reflected energy for the higher-order
scatterings is simply assumed to follow a cosine distri-
bution with its peak at the anti-scattering angle weighted
by the amount of energy involved in the third and
higher-order scatterings.

(1= 4.1 (00) = 4 (0) = £),2(600) — 7,.,(0,)]
pg.H(Osa(ps) = B

(26)

Egs. (2a) and (2b) is used to calculate the hemispherical
reflectivity and the transmissivity reflectivity.

Finally, the bi-directional reflectivity can be found by
adding the bi-directional reflectivity for first-order scat-
tering, Eq. (15), second-order scattering, Eq. (25), and
higher-order scatterings, Eq. (26).

3. Results and comparisons

3.1. One-dimensional random rough surfaces

Fig. 5 presents bi-directional reflection results pre-
dicted by the statistical model for one-dimensional per-

fectly conducting random rough surfaces. The results
include first-order, second-order, higher-order and total
bi-directional reflectivities. The results predicted by the
geometric optics approximation and the electromagnetic
theory are also presented for comparison. The electro-
magnetic theory solution is obtained by transforming
Maxwell’s equations into surface integrals, and the in-
tegral equations are discretized into matrix forms. LA-
PACK-b1 routines on a Cray Y-MP4/464 are used to
solve the matrix and determined the reflection distribu-
tion [10,11]. Each surface length is discretized into at
most 2450 points, depending on the roughness of the
surface. Surface lengths are typically 100-2001. The
surface length is made as long as possible to minimize
the edge effects. For the geometric optics approximation,
each surface length is represented by at most 2000 nodes
and surface lengths are typically 100-2004 [30,31].

Fig. 5(a) presents the results for a surface that is
relatively smooth (o/7 =0.2). The incident angle is
0, = 30° and the bi-directional reflectivity is presented
for scattering angles, 0;, between —90° and 90°. For this
case, the reflected energy for the first-order scattering is
about 98% of the total energy. The exact and approxi-
mate results are a Gaussian-shaped curve about the
scattering angle, 0, = 0,. The reflection distribution
spans a range of scattering angles, but the distribution
does not spread over the entire hemisphere. The bi-di-
rectional reflectivity for the surface with an intermediate
roughness of g/t = 0.5 is shown in Fig. 5(b). For this
case, although the total reflection is still dominated by
the first order scattering, the second-order scattering
becomes considerable and has an important contribu-
tion to the total reflection. In general, the total reflection
distribution spans a larger angular region than the case
presented in Fig. 5(a). The energy is reflected more dif-
fusely throughout the hemisphere, and no significant
peaks occur. Both approximate predictions and the ex-
act solutions are in good agreement for these two cases.

The reflection results for very rough surfaces are il-
lustrated in Fig. 5(c) and (d) with ¢/t =0.75 and
o/t = 1.1, respectively. For the case with g/t = 0.75, the
total reflection has equal contribution from the first-
order and second-order scatterings. Both approximate
models and the electromagnetic theory predict a very
diffuse total reflection distribution with a slight en-
hancement in the angular region about 0y = 0, = 30°.
The slight enhancement is due to the second-order
scattering. For the case with g/t = 1.1 with rms devia-
tion on the order of the correlation length, the first and
second-order scattering dominate the total reflection
distribution. The geometric optics approximation shows
that a large amount of energy for the higher-order
scattering is reflected at the anti-scattering angle of
0s = —0, = —30°, resulting in a retro-reflection peak in
the total reflection distribution. However, no retro-re-
flection peak is predicted by the statistical method.
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Fig. 5. Comparisons of approximate predictions and electromagnetic theory calculations for perfectly conducting surfaces:
(@) g/t=02, ¢/A=02, t/2=1.0, 0, =30°% (b) ¢/t =0.5, ¢/2=0.3, t/.=0.6, 0, =30% (c) 0/t =0.75, ¢/2=7.5,1/1=10.0,

0o =30% (d) o/t = 1.1, /=11, t/A=1.0, 0, = 30°.

The parameter domain of validity for the geometric
optics approximation has been constructed based on a
directional energy criterion [30]. The criterion, E,, is
defined as the ratio of the difference in directional re-
flected energy predicted by the exact solution and by the
approximation within an angular region A to the av-
eraged incident energy predicted by the exact solution.
The ratio is evaluated over all directions in the hemi-
sphere and the average difference is used in the criterion.

In this work, the parameter domains of validity for
the statistical method are also constructed based on this
directional energy criterion. For a rather restrictive
comparison, in this work, Af; = 1° and the approxi-
mation is considered valid if E; < 0.20. Both the exact
solution and the geometric optics approximation con-
serve energy within 1%. Approximately 40 different
surfaces were compared to construct the domain of
validity, with the correlation lengths ranging from
1/A=0.1 to t/A =10.0. The range of rms deviation is
from o/4 = 0.1 to o/4 = 10.0, corresponding to a range
of the ratio ¢/t from 0.01 to 4.0. A majority of the
calculations were performed in the regions near the
domain boundaries. Over 60 surface realizations were

used for both the exact predictions and the geometric
optics approximation. Due to computational limita-
tions, the exact solution is inaccurate at incident angles
larger than 45°, since conservation of energy for such
surfaces diverges. Therefore, the results at incident
angles larger than 45° are not reported.

Fig. 6 illustrates the domain of validity of the stat-
istical model. The domain of the geometric optics ap-
proximation is also presented for comparison. The
domain of validity of the statistical method model based
on the directional criterion has a similar shape as that of
the geometric optics approximation. It is vertically and
horizontally bounded by (g/1)cos0, =0.20 and
g/t =1.0. Note that the entire region for which the
statistical method model is valid is covered by the region
for the geometric optics approximation. This suggests
that the assumption of no correlation between surface
slopes and surface heights between points is inadequate
for cases with a ¢/t approximately greater than 1.0.
However, the domain of wvalidity of the statistical
method model has already covered an important range
of surface parameters of interest in engineering pur-
poses.
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Fig. 6. Rough surface scattering domains of validity for one-
dimensional surfaces. The range of parameters compared in-
cludes 0.01 <¢/7<10.0, 0.1<a/A<10.0 and —45° < 6, <45°.

One-dimensional dielectric material surfaces are also
considered. Fig. 7 illustrates the reflection distribution
for a dielectric material with optical constants
(n,x) = (4,0.01) and with the same geometric par-
ameters as the perfectly conducting case presented in
Fig. 5(c), where o/t =0.75,6/A=17.5 and t/1 = 10.0.
Similarly, the first-order, second-order, higher-order and
total bi-directional reflectivities are presented for both
approximate predictions, and the results are compared
with the electromagnetic theory calculations. Compari-
son of the dielectric material results with the perfectly
conducting surface reflectivity results indicates a three-
fold decrease in magnitude of the total reflection distri-
bution, and the shape of the reflection distribution curve
changes. More energy is reflected in the negative scat-
tering angle region for the dielectric material. This
phenomenon occurs because a fraction of energy is ab-
sorbed after each bundle-surface interaction for the di-
electric material (the rest of the energy is transmitted
through the surface interface). As a result of the ab-
sorption for the dielectric material, the reflected energy
for the second-order scattering is significantly lower in
magnitude relative to the reflected energy for the first-
order scattering. For the perfectly conducting surface,
the energy distributions for the first and second-order
scatterings are of comparable magnitude. In general, as
shown in Fig. 7, the approximate solutions and the
electromagnetic theory calculation are in good agree-
ment.

Several dielectric cases have been studied and com-
pared to the perfectly conducting surfaces. For both the
geometric optics and statistical method approximation,
the domain of application for perfectly conducting sur-
faces (E; < 0.20) should be a conservative estimate for
dielectric materials. For smooth surfaces, the values of
E, both for dielectric and for perfectly conducting cases
are very similar. For rough surfaces, the approximations

1 — T - e
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Fig. 7. Comparisons of approximate prediction with electro-
magnetic theory calculations for dielectric materials. o/t =
0.75, /A =1.5, ©/2=10.0, 6, =30°, n =4.00, k =0.01.

are slightly more accurate for dielectric cases than per-
fectly conducting cases. In general, the values of E; for
dielectric surfaces are lower than for perfectly conduct-
ing surfaces for rough and very rough cases. The ap-
proximations should be more accurate for dielectric
cases since the second and third-order scatterings dom-
inate the solution for a perfectly conducting rough sur-
face. For dielectric materials, only a fraction of the
incident energy is reflected after each scattering and the
energy in the higher-order scatterings is smaller than
single scatterings. The surface reflection is then domi-
nated by single scattering.

The exact solution for dielectric surfaces takes ap-
proximately 100 megawords of memory and 14 h of
CPU time using the electromagnetic theory to predict
the averaged scattering from 60 very rough surface re-
alizations. The geometric optics approximation takes
approximately one-hundredth of the memory and one-
tenth of the CPU time to predict the scattering, while the
required CPU time and memory for the statistical
method are approximately one-hundredth that of the
geometric optics approximation.

3.2. Two-dimensional random rough surfaces

For two-dimensional surfaces, since extensive exact
solutions are not presently available, the approximate
models are quantified by comparisons with data from
existing experimental results from various experimental
facilities. Comparisons of the statistical method predic-
tions and geometric optics solutions with various exist-
ing experimental findings [21,22,31,33,42-45] are made,
and selected results are presented in Fig. 8. In Fig. 8, the
results are presented in ascending order of surface slope
for curves (a)—(f). The results are shown in the plane of
incidence, ¢, = 0°. The vertical axis is the normalized
bi-directional reflectivity [and multiplied by cos(6;)]. The
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Fig. 8. Comparison of the geometric optics approximation and the statistical method with existing experimental findings for the

normalized bi-directional reflectivity.

approximate predictions are shown with solid lines and
experimental findings shown with specific points.

Curves (a)-(c) in Fig. 8 illustrate the results from
smaller roughness surfaces (¢/t < 0.25). In these cases,
the geometric optics predictions, the statistical method
solutions and the experimental findings are Gaussian-
shaped curves around the scattering angles, and the re-
flection distribution spans a limited range of scattering
angles. No distinct off-specular peaks are noticed in
curves (a) and (b). For curve (c), the maximum values of
the reflection distribution occur at angles greater than
the specular angles. In general, these approximate pre-
dictions are in excellent agreement with the experimental
findings. The rms errors for the geometric optics ap-
proximation and for the statistical method are less than
0.10 for curves (a), (b) and (c). Other researchers [43]
had compared these experimental findings with the ap-
proximate methods such as the Kirchhoff approxima-
tion, and such approximate methods are in less accurate
agreement in both trend and magnitude than the geo-
metric optics and statistical method results.

The results from surfaces with intermediate rough-
ness (0.25 < ¢/t < 0.70) are presented in curves (d) and
(e). The reflection distribution is no longer a Gaussian-
shaped curve and the distribution spreads over the entire
hemisphere. For case (d), an off-specular peak is also
observed for all the predictions. Unlike case (c), the
maximum values are at angles smaller than the specular
angles. The agreement between the experimental find-
ings and approximate results is excellent. The rms errors

for the geometric optics approximation and the statisti-
cal method are less than 0.15. For the very rough surface
shown in curve (f), a slight retro-reflection peak is ob-
served in the geometric optics prediction and the ex-
perimental findings. At an incident angle of 40°, a sharp
peak occurs at 0y = —40° and a smaller forward peak
occurs at 0, = 20°. Compared with the experimental
data, the statistical method does not predict a strong
retro-reflection peak at the anti-scattering angle; in
general, the predictions agree in trend with the experi-
mental findings and provide a fair approximation on
magnitude. The rms error and the maximum error are
approximately 0.22 and 0.48 for the statistical method.
The geometric parameters for all the cases including
both experimental and numerical studies compared in
this work are within the domains of validity of the
one-dimensional geometric optics approximation and
statistical method. In summary, since the two-dimen-
sional geometric optics predictions agree well with all the
existing approaches, it seems likely that the one-dimen-
sional domain is valid for two-dimensional surfaces. For
the statistical model, the comparisons indicate that this
approximation is a relatively inexpensive tool for sur-
faces with a /7 less than 0.5. In addition, the statistical
model provides a fair approximation on both magnitude
and trend for the surfaces with a o/t greater than 0.5.
The geometric optics and statistical model predic-
tions are also compared with a few existing electro-
magnetic theory calculations [15,21,22]. Similarly, the
geometric optics predictions and electromagnetic theory
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calculations are found to be very similar for a large
range of ¢/, and for the statistical model, the two-di-
mensional surface domain is smaller than the one-di-
mensional domain.

4. Conclusions

The statistical model is developed based on the geo-
metric optics approximation. Instead of tracing the
bundles, probability and statistical concepts are applied
to quantify the ray-tracing process. The total bi-direc-
tional reflectivity including the first-, second- and higher-
order scatterings can be expressed in a closed form. The
basic elements of this model are the incoming and out-
going shadowing functions, the transfer function and the
Fresnel coefficient. The bi-directional reflectivity is a
function of geometric parameters, dielectric properties
and incident angles but not the incident wavelength
because no correlation between surface heights and
slopes is assumed.

For one-dimensional random rough surfaces, the
statistical model is quantified by the exact electromag-
netic theory. It has been shown that the statistical
method can provide accurate results for surfaces which
have a g/t less than or equal to unity for one-dimen-
sional surfaces and its domain covers the majority of
engineering problems. In addition, unlike the geometric
optics approximation, no surface generation is required
for the statistical model and the computational time and
memory units are one-hundredth of those required by
the geometric optics approximations.

General two-dimensional surface electromagnetic
theory calculations are not presently available; thus the
statistical model is quantified by the experimental data
from various facilities and by the few existing electro-
magnetic theory calculations. The comparisons indicate
that the statistical model is a relatively inexpensive ap-
proach for surface reflection distribution predictions
from surfaces with a ¢/t less than 0.5, and this model
can provide an approximation on both magnitude and
trend for the surfaces with a ¢/t greater than 0.5.
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